Teensy Weensy Universe - Quantum Mechanical Model of the Universe as We Know It
Les ouvrages sur la mécanique quantique (astronomie, cosmologie, etc.) mentionnent souvent que « les lois de la mécanique quantique » ne s'appliquent pas au « macro-monde ». Tout dépend de ce que l'on entend par « macro-monde ».
Combien d'atomes constituent la limite, quelques uns seulement, ou un verre de lait, une grande maison, une ville, un continent ? Rêvons plutôt en grand, la planète entière, peut-être notre système solaire, notre galaxie, ou l'univers tel que nous le connaissons... Dans ce livre, nous n'avons pas l'intention d'« étendre » la mécanique quantique. Dans ce livre, nous ne voulons pas « étendre » la mécanique quantique.
En tant que modèles physiques, étant donné une vision du monde, nous trouvons les conditions limites, établissons un modèle mathématique correspondant à cette vision et le comparons à la réalité... Au lieu d'« étendre » la mécanique quantique, nous la prenons telle qu'elle est, tout simplement. Examinons quels types de systèmes correspondent à leurs lois et dans quelles conditions.
Les affirmations fondamentales qui sous-tendent le livre sont les suivantes : Dans les structures de type système solaire, les constituants individuels possèdent une certaine charge (en plus d'avoir une masse, un spin, un moment magnétique, tout comme les particules des structures atomiques). Cette affirmation permet de modéliser et d'interpréter les structures de type système solaire en termes de mécanique quantique. Tout le reste peut être déduit de l'énoncé ci-dessus.
Le champ gravitationnel et le champ électrique existent indépendamment l'un de l'autre. La validité des relations fondamentales entre la mécanique quantique relativiste est vraie pour les systèmes à l'échelle atomique, ainsi que pour les systèmes à l'échelle galactique.
© Book1 Group - tous droits réservés.
Le contenu de ce site ne peut être copié ou utilisé, en tout ou en partie, sans l'autorisation écrite du propriétaire.
Dernière modification: 2024.11.14 07:32 (GMT)